skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meng, Fanyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. eXplainable Artificial Intelligence (XAI) has garnered significant attention for enhancing transparency and trust in machine learning models. However, the scopes of most existing explanation techniques focus either on offering a holistic view of the explainee model (global explanation) or on individual instances (local explanation), while the middle ground, i.e., cohort-based explanation, is less explored. Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances, enabling a deeper understanding of model decisions within a defined context. In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations, define their desired properties, and create a generalized framework for generating cohort explanations based on supervised clustering. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Path-specific effect analysis is a powerful tool in causal inference. This paper provides a definition of causal counterfactual path-specific importance score for the structural causal model (SCM). Different from existing path-specific effect definitions, which focus on the population level, the score defined in this paper can quantify the impact of a decision variable on an outcome variable along a specific pathway at the individual level. Moreover, the score has many desirable properties, including following the chain rule and being consistent. Finally, this paper presents an algorithm that can leverage these properties and find the k-most important paths with the highest importance scores in a causal graph effectively. 
    more » « less